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A SHALLOW SHELL FINITE ELEMENT
OF TRIANGULAR SHAPE

G. R. COWPER,t G. M. LINDBERGt and M. D. OLSONt

National Aeronautical Establishment, Ottawa, Canada

Abstract-A conforming shallow shell finite element of arbitrary triangular shape is developed and applied to
the solution of several static problems. The element incorporates 36 generalized coordinates, namely the normal
displacement wand its first and second derivatives plus the tangential displacements u and v and their first deriva­
tives at each vertex. The theoretical asymptotic rate of convergence of strain energy when using this element is
n~ 6, where n is the number of elements per side of a structure. The example applications presented demonstrate
that accurate predictions of stresses as well as displacements are obtained with only a few elements.

1. INTRODUCTION

CoNSIDERABLE progress has been made in the past few years in applying the finite element
method to the analysis of shell structures. The initial work in this area was devoted to
shells of revolution in which closed rings or conical shell segments were used to model
complete structures. Much of this work is review~d by Jones and Strome [1].

Attempts to develop a finite element method for general shell structures have generally
followed two different courses. In the first approach, the shell is replaced by an assemblage
of flat plate elements which are either triangular or quadrilateral in shape. Each plate
element is connected in some fashion to those surrounding it and undergoes both bending
and stretching deformations. This approach has been successfully employed for cylindrical
geometry by Hrennikoff and Tezcan [2J and for general shell shapes by Zienkiewicz and
Cheung [3J, Clough and Johnson [4J and Carr [5]. However, the method has the dis­
advantage that there is no coupling between bending and stretching within each element,
and consequently a large number ofelements must be used to achieve satisfactory accuracy.

The second approach, which ultimately should yield better results, is to develop
curved shell elements that permit closer geometrical representations of a shell structure.
Such an approach has been followed with good results for the case of cylindrical shells
where rectangular elements are completely adequate. Successful cylindrical shell elements
have been developed by Bogner et ai. [6J, Cantin and Clough [7J and Olson and Lindberg
[8].

On the other hand, attempts to develop rectangular or quadrilateral elements for
general shells have been only partially successful. For example, Connor and Brebbia [9J
have introduced a rectangular element based on shallow shell theory, and Gallagher [lOJ
has developed a quadrilateral element for translational shells. However, both elements
use only linear distributions for the tangential displacements and consequently do not
incorporate all the required rigid body modes. Although this does not preclude con­
vergence to the correct answer, it does mean that the elements are far too stiff and there­
fore are quite inefficient.
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Several general curved shell elements of arbitrary triangular shape have now been
developed. Utku and Melosh [11] have introduced a shallow curved triangular element
based only on linear displacement distributions. This element is consequently too stilT
More recently, Strickland and Loden [12] have presented another shallow curved In

angular element based on a cubic variation for the normal displacement and hnea!
variations for the tangential displacements. This element is a distinct advancement
over the former one but appears to offer little improvement in accuracy ,wer the
comparable flat plate model of Clough and Johnson [4]. Bonnes et , ha v,
introduced a shallow curved triangular element based on a cubic variation for
three displacement components. They actually present results for two verSiOns or thIS
element, one with 27 degrees of freedom and the other with 36. The latter version incor
porates the normal derivatives of u, t' and IV at mid edge nodes as the extra degrees
freedom and hence allows the normal derivatives to vary quadratically along an edge
whereas the former one has only a linear variation. Both elements appear to give some,
what better results than the element of Strickland and Loden [12]. However. the 36 degree
of freedom version has the distinct disadvantage of having mid-edge nodes, and the othel
model is somewhat limited by having only a linear variation of normal dircclives
each edge.

All the foregoing elements have disadvantages common to triangular piate bending
elements as well, and it is not surprising that the development of a good triangular curved
shell element has been impeded by the lack of a satisfactory conforming triangular plate
bending element. Only recently has such a plate bending element been developed by
Cowper et al. [14--16J and also by Bell [17, 18J and Butlin and Ford 19J This clemen!
uses as generalized coordinates the transverse displacement and its first and second
derivatives at each vertex, a total of 18 in all. The displacement function for the clemeni
contains a complete quartic polynomial plus some higher degree terms and allows a
cubic variation of the normal slope along each edge. It is shown [15, 16J that use of thIS
element leads to strain energy convergence rates approaching /1-6, where /1 is the number
of elements per side of a plate. Along with this rapid rate of convergence, it was also found
that remarkably accurate displacement and stress predictions were obtained even \vith
coarse grids of elements.

As a first step in extending this highly successful approach to shells, this paper 111 ves(;­
gates the application to shallow shells. The shallow shell approximation leads to the
significant simplification that all necessary mathematical manipulations may be carried
out in the base reference plane. Furthermore, with this approximation, it is sufficient to
assume constant geometric curvature over the element.

The displacement function for the normal deflection, w, of the shell is formulated
exactly as it was for the plate. That is, w is taken as a quintic polynomial (21 terms) in the
two cartesian coordinates in the base plane. Three constraints are placed on the polynomial
to ensure that the normal derivative varies cubically along each edge. The tangential
displacements u and v for the shell are each expressed as cubic polynomials (10 terms each),
and the generalized coordinates are taken to be u and v and their first derivatives at each
element vertex, plus u and vat the centroid. However, these two centroidal displacements
are condensed out of the final stiffness and load matrices for the element by minimizing
the potential energy with respect to them. (This particular representation of the membrane
state is the same as that originally suggested by Felippa [20] and extensively studied by
Carr [5] for a refined plane stress element.) Hence, the final element has 36 degrees of
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freedom and is completely conforming for smooth shells.t Furthermore, it may easily be
shown that the element contains an exact representation of three inextensional modes as
well as all six required rigid body modes, and has an asymptotic strain energy convergence
rate of n- 6 in complete analogy to the plate bending element.

The derivation of the basic stiffness and consistent load matrices for the element
follows the now standard direct stiffness method of calculating potential energy. How­
ever, a major advance is achieved in that the matrix components are obtained in closed
form relative to the polynomial coefficients. These results are then easily transformed to
corner displacement notation in local or global coordinates by simple matrix multiplica­
tion.

The resulting element is systematically tested on three problems for which exact
solutions are known. The first example application considered is the plane stress problem
of a flat square plate loaded on two opposite edges by a parabolically distributed normal
stress. This example serves to completely verify how well the shell element works in the
limiting case of zero curvatures. The next application considered is that of a shallow
spherical cap supported on a square base and subjected to uniform pressure loading.
Calculations are carried out for two values of the shell rise parameter corresponding to
two different shell boundary layer widths (the boundary layer is sometimes referred to as
the edge effect). The results clearly illustrate the effect of the boundary layer on the finite
element representations. The final example is the cylindrical shell roof problem used by
many authors [4,5,7,12,13] to test their elements. This example serves to illustrate the
superiority of the present element over previous developments.

2. THEORETICAL FORMULATION

2.1 Strain energy

The geometry for an arbitrary triangular shallow shell element is shown in Fig. 1.
The shell shape is defined by the height (e, lJ) above the base plane, in which e, lJ are taken
as local coordinates and x, y as global coordinates. The dimensions a, b, c of the base
triangle 1'2'3' and the rotation angle () are easily derived in terms of the global coordinates
of the vertices [15].

Following the shallow shell theory of Novozhilov [21], the membrane strains in the
shell are given by

eqq = vq-(qqW

e~q = uq+v~-2(~qw

(1)

where u and v are the tangential displacements measured parallel to the ~ and lJ directions,
respectively, and W is the normal displacement (Fig. 1). The subscripts on U,V, wand (
denote differentiation, i.e. u~ = ou/o~ etc. The bending strains are given by

(2)

t See Appendix for a rigorous discussion of this point.
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FIG. I. Shell element geometry and coordinate systems.

Combining the contributions from the membrane and bending strains yields the strain
energy density

dU
dA

(3)

For shallow shells, the area of the shell surface is approximately equal to its projected
area, and hence equation (3) may be integrated over the base plane. Then combining
equations (IH3) yields the final strain energy expression

U = Et 2 II {[U~+V;+2VU~V~+1(l-V)(U~+V~)2]
2(1- v )

- 2[('~~+ v,~~)u~+K~~ + v,~~)v~+(1- vK~~(u~+ t,~)]w

+ [a~+'~~+2v'~~'~~+2(1- vKl~]W2

+~[w~~+w~'l+2vw~~w'l'l+2(1- V)Wl'lJ} d~ dq (4)
12

where the integration is over the base triangle 1'2'3' in Fig. 1.
In the present work, the function '(~, q) is assumed to be of quadratic form
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This implies that the shell element has constant curvatures, and this is consistent with the
approximations of shallow shell theory. It may be noted from equation (4) that the shell
curvatures are the only shape quantities required in calculating strain energy. Therefore,
they may be specified for an element directly (which is the approach followed in the
present work), or they may be calculated from equation (5) once the constants therein
have been determined. One convenient way to do this is to specify the height of the shell
at points 1', 2' and 3' and also at the mid-edge points of the element of Fig. 1.

2.2 Displacements
As outlined in the Introduction, special displacement functions are required for the

present element in order to ensure conformity and high accuracy. The displacement
function developed for the conforming plate bending element [15,16] is used here for the
normal displacement w. This function contains a complete quartic polynomial and leads
to strain energy convergence rates approaching n- 6

, where n is the number of elements
per side of a plate.

The choice offunctions for the tangential displacement components uand v is motivated
by the need for an accuracy comparable to that for the normal displacement w. This means
that the membrane state representation should also lead to strain energy convergence
rates of n- 6

• To achieve this, it is sufficient to express u and veach as complete cubic
polynomials, as may be easily shown by an argument similar to that used in the con­
vergence proof for the plate bending element [15]. That is, complete cubic polynomials
can represent the exact displacements u and v with an error of order h4 within each
element, where h is a characteristic linear dimension of the element. The first derivatives
of u and v, which are the quantities that enter equation (4), will be represented to order h3

•

Hence, since these quantities enter that equation quadratically, the strain energy will be
correct to order h6

, provided u and v are continuous between adjacent elements.
Finally, considering that h is inversely proportional to n, the number of elements used

per side of a structure, leads to the conclusion that this representation of the membrane
state will also lead to strain energy convergence proportional to n- 6 •

Hence, the starting point for the present shallow shell element is to assume u, v and w
in the form (Fig. 1)

u = a l +a2~+a31]+a4~2+a5~I]+a61]2+a7~3+a8~21]+a9~1]2+alOI]3 (6a)

v = all +a12~+a13l]+a14~2+a15~I]+a161]2+a17~3+a18~211+a19~112+a2oI]3(6b)

w = a2l +a22~+a231]+a24~2 +a25~11+a26'12 +a27~3 +a28~211

+a29~'12 +a3o'l3 +a3l~4+a32Cl1 +a33~2'12 +a34~'13

+a35'14
+a36~5 +a37~31]2 +a38~2'13 +a3ge'l4 +a40115. (6c)

Note that the expression for w, equation (6c), does not contain the term ~4'1, and therefore
automatically satisfies the requirement that the normal slope be only cubic along the
element edge 1-2. The conditions that ensure only cubic variations of normal slopes
along edges 2-3 and 3-1 are the same as for the flat plate case [15, 16] and are

5b4ca36 +(3b2c3-2b4c)a37 +(2bc4 - 3b3c2)a38 +(c5-4b2c3)a39 -5bc4a4o = 0 (7a)

5a4ca36 +(3a2c3- 2a4C)a37 -(2ac4 - 3a3c2)a38 +(c5-4a2C3)a39 +5ac4a4o = O. (7b)
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These constraints are just sufficient to reduce the twenty independent parameters
equation (6c) to only eighteen. The generalized displacements for ware then taken to be w,
and its first and second derivatives at each corner of the element, a total of eighteen which
is consistent with the eighteen free parameters available. The generalized displacements
for u and v are taken to be u and v and their first derivatives at each corner plus u and
vat the element's centroid. This gives a total of twenty which is consistent with the twenty
free parameters of equations (6a) and (6b). All the generalized displacements arc assembled
into a 38 column vector {Wd, first in the local coordinate system ~, I).

(8)

where u~ = oula~, etc. The subscripts 1,2,3, c denote the corners 1, 2 and 3 and the centroid
of the element, respectively. The coefficients Lli of equations (6) are assembled into a
40 column vector {A} where

and combining equations (6H9) yields the matrix relation

W j

o = [T]{A}

o

(9)

(10)

where the 40 x 40 transformation matrix [T] is given in Table 1.
The determinant of [T] has the value - 64c34(a +b)31(a2 +c2 )(b2 +c2 )/729, which is

nonzero for all practical problems. Hence, equation (10) may be inverted to give

WI

{A} = [T~l] 0

o
(11 )

where the 40 x 38 matrix [TI ] consists of the first 38 columns of [T - j].

2.3 Stiffness matrix
The stiffness matrix for the element is obtained from a calculation of strain energy.

The displacement functions of equations (6) are substituted in equation (4) and the integra­
tion carried out to yield the quadratic strain energy form

Et {}T[ I lU = . 2 A khA{.
2(1- v )

(12)

The entries of the stiffness matrix [kJ may be determined in closed form just as they were
for the plate bending element [15, 16J.
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TABLE I. TRANSFORMATION MATRIX [1']

5, 0 0
0 5, 0
0 0 5z
S; 0 0
0 53 0

[T] 0 0 i4
55 0 0
0 55 0
0 0 56
51 0 0
0 51 0
0 0 58

[51]=[ i -b 0 bZ 0 0 -b3 0 0 nI 0 -2b 0 0 3bz 0 0
0 I 0 -b 0 0 bZ 0

[~{l
-b 0 bZ 0 0 -b3 0 0 0 b4 0 0 0 0 -b5 0 0 0

~J
I 0 -2b 0 0 3bz 0 0 0 -4b3 0 0 0 0 5b4 0 0 0
0 I 0 -b 0 0 bZ 0 0 0 -b3 0 0 0 0 0 0 0
0 0 2 0 0 -6b 0 0 0 12bz 0 0 0 0 -20b3 0 0 0
0 0 0 I 0 0 -2b 0 0 0 3bz 0 0 0 0 0 0 0
0 0 0 0 2 0 0 -2b 0 0 0 2bz 0 0 0 -2b3 0 0

[53J= [g a 0 0 2 0 0 03 0 0

gJI 0 20 0 0 302 0 0
0 I 0 a 0 0 0 2 0

[~fl
a 0 oZ 0 0 03 0 0 0 a4 0 0 0 0 05 0 0 0

!l
I 0 20 0 0 3a2 0 0 0 403 0 0 0 0 504 0 0 0
0 I 0 a 0 0 02 0 0 0 03 0 0 0 0 0 0 0
0 0 2 0 0 60 0 0 0 120z 0 0 0 0 2003 0 0 0
0 0 0 I 0 0 20 0 0 0 3a2 0 0 0 0 0 0 0
0 0 0 0 2 0 0 2a 0 0 0 2a2 0 0 0 203 0 0

[55] = [i 0 c 0 0 c Z 0 0 0
e

3JI 0 0 c 0 0 0 c2

~20 I 0 0 2e 0 0 0

[Soy ~
0 e 0 0 e2 0 0 0 c3 0 0 0 0 e4 0 0 0

o "JI 0 0 c 0 0 0 cZ 0 0 0 0 e3 0 0 0 0 c 4 0
0 I 0 0 2c 0 0 0 3e2 0 0 0 0 4c3 0 0 0 o 5c4

0 0 2 0 0 0 2c 0 0 0 0 2c2 0 0 0 0 2c3 o 0
0 0 0 I 0 0 0 2c 0 0 0 0 3c2 0 0 0 0 4C3 0
0 0 0 0 2 0 0 0 6c 0 0 0 0 12cZ 0 0 0 o 20c3

[51]{1
c (o-b)z (o-b)e -£ (0-b)3 (a-b)ze (o-b)e Z ~J3" ~ -9- 9 2'7 27 ~ 27

[58J=~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 504c, 3aZc3-204c, -20e4+3a3c2 , c5-4aZe3 , 50C~
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5b4c,3bzc3-2b4c, 2bc4-3b3c2 , c5-4~c3,-5bc4

This may be carried out most easily by rewriting equations (6) as

10

U = L al~"'ilJ'1i (13a)
i= 1

20

V= L ai~PiYfqi (13b)
i= 11

40

W= L ai~riIJSi. (Bc)
1=21
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Then substituting equations (13) into equation (4) and incorporating the symmetry
requirement yields

kij = mjmjF(mj+mj-2, nj+n)+qjqjF(pj+ Pj, qj +qj- 2)+}(1- v)[njnjF(mj + mj, nj+ nj- 2)

+ pjpjF(pj+ Pj- 2, qj+q)] + [i-{I- v)njpj+ vmjq;]F(mj+ pj-I, nj+qj-))

+ [i-{I- v)njpj+ vmjq;]F(mj + Pj -I, nj +qj-l) - ((~~ + v(qq)[mjF(m, + r;-- 1,11, +s;J

+ mjF(mj + r,- 1, nj- s;)] - ((qq + v(~~)[qjF(p, + rj , qj + Sj-l) + qjF(pj+ r" qj + Si- I)J

-(1- vK~q[njF(mj+rj, nj+sj -1)+njF(mj+rj, nj+sj-I)+ pjF(pj+ rj- I, q, +s)

+pjF(pj+rj-l, qj+s;)]+[(~~+(;q+2v(~~(qq+2(1-vK~q]F(rj+rj,Sj+s)

+(t2/12){rjri'j-l)(rj-l)F(rj+rj-4, si+s)+Sjsisj-l)(sj-l)F(rj+rp si+ sj-4)

+ [2(1- v)rjrjsjsj + vrjsi'j -1)(sj - I) + vrjsj(r j - I)(sj -1)]F(ri + rj - 2, Sj + Sj - 2)} (14)

where

F(m,n) = cn+l[am+I_(_br+I]~~.
(m+n+2)!

(15)

(16)

Note that j andj run from 1 to 40, and therefore mj and nj are defined to be zero for j > 10,
pj and qj are zero for j < 11 and j > 20, and rj and Sj are zero for j < 21. All the computa­
tions involved in evaluating the kij from equation (14) are carried out within the computer
once the values of a, b, c, mj, nj, Ph qj, rj and Sj are furnished.

Combining equations (11) and (12) yields the strain energy in terms of {WI} as

U = 2(1~ v2) {Wd T[K I ]{ Wd

where

(17)

is the 38 x 38 stiffness matrix in terms of the generalized displacements relative to the local
coordinate system ~,YJ. This matrix is now transformed to the global coordinate system
x, y usmg

(18)

where

is the generalized displacement vector relative to global coordinates, and [R] is the rota­
tion matrix given in Table 2. Then combining equations (16), (17) and (18) yields

(20)

where
(21 )

is the 38 x 38 stiffness matrix relative to global coordinates.



A shallow shell finite element of triangular shape 1141

TABLE 2. ROTATION MATRIX [R]

R, 0 0 0 0 0 0

0 RZ 0 0 0 0 0

0 0 R, 0 0 0 0

R 0 0 0 Rz 0 0 0

0 0 0 0 R, 0 0

0 0 0 0 0 Rz 0

0 0 0 0 0 0 R3

where

cos8 0 0 sin 8 0 0

0 cosz8 sin Bcos8 0 sin8cosB sinzB

0 -sln8cos8 cosz8 0 -sinz8 sinBcosB
[R,] =

-sin8 0 0 cos8 0 0

0 -sinB cos8 -sln Z8 0 cosz8 sin8cos8

0 sinz8 -sin8cosB 0 -sinBcos8 coszB

0 0 0 0 0

0 cos8 sin8 0 0 0

0 -sinB cos8 0 0 0
[Rz] =

0 0 0 cosZ8 2sin BcosB slnzB

0 0 0 -sin Bcos8 cosze-sinzB sin8cos8

0 0 0 slnz8 -2sinBcosB coszB

[ ..., ';"JR3 =
[] -sinB cosB

2.4 Consistent load vector

The consistent load vector is obtained by calculating the virtual work done by the
applied loads Qu(~, '1), Qv(~, '1) and Qw(~, '1) in the u, v and w directions, respectively. The
transformed load vector becomes

{P} = [RY[TIY{Q}

where the entries in the column vector {Q} are

ff Qu~m''1ni d~ d'1, i < 11

Qi= ff Qv~P''1qi d~ d'1, 10 < i < 21

ff Qw~ri'1si d~ d'1, i> 20

(22)

(23)
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where the integration is over the base triangle l' 2' 3' of Fig. 1. In the specIal case of
uniform pressure load of intensity Qo

1<21

I> 20.

(25)

(26)

2.5 Condensation ofstiffness matrix

Before proceeding to use the element just derived, it is convenient to condense out the
centroidal displacements Uc and Vc' It maybe noted that these displacements, since they
lie inside the element, will be unaffected when the elements are joined together to represent
a structure. Hence, they may be eliminated before the elements are joined without affect­
ing the final results. It is advantageous to do this because it will reduce the number of
degrees offreedom in each element and will also simplify the process ofassembling elements.
The reduction is carried out by minimizing the potential energy in one element. The matrix
equation of equilibrium for an element is written in the partitioned form

i JKo I K oc W Po
[K 2 ]{ W2 } = [_. r-:'- -- {--} = {--}

.Koc I Kc f¥c Pc

where {f¥c} is the two component vector (ue. vc)T and {W} contains the first 36 components
of equation (19).

Equation (25) is separated into two equations and {f¥c} is eliminated to yield

[KJ{ W} = [P}

where

is the reduced 36 x 36 stiffness matrix, and

{Pi = {Po}-[KocJ[Kc IJ{PcJ

is the reduced 36 consistent load vector for the shell element.

3. NUMERICAL APPLICATIONS

(27)

(28)

3.1 Flat plate examples

It is worthwhile to first consider the limiting case of a flat plate. In this case, the bend­
ing state and the plane stress or membrane state uncouple and each may be solved inde­
pendently. The bending element has already been thoroughly tested [15, 16]. It may be
noted that strain energy convergence rates approaching n- 6 were actually achieved in
several examples, and excellent accuracy was obtained in all cases.

The plane stress problem illustrated in Fig. 2 is used to check out the plane stress
element. The problem is a square plate loaded on two opposite sides by a parabolically
distributed normal stress. The other two sides are stress free. Timoshenko [22] has presented
an approximate energy solution for this problem, but for comparison with finite element
solutions, it is necessary to have a more exact solution. Such a solution was obtained by
using trigonometric and hyperbolic series expansions, analogous to Timoshenko's solu­
tion for the bending of a clamped rectangular plate [23]. A rigorous error analysis was
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FIG. 2. Parabolically loaded plane stress problem (n = 8 shown).
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performed to establish limits on truncation errors, so that the accuracy of calculated
stresses and displacements could be guaranteed.

The problem is solved with the plane stress elements as indicated in Fig. 2 using various
gridworks for the quarter plate. A consistent load vector is obtained to represent the
parabolic stress distribution along the edge CD. Some of the numerical results for displace­
ments and stresses at points A, B, C and D as well as strain energy are presented in Table 3,

TABLE 3. NUMERICAL RESULTS FOR PARABOLICALLY LOADED PLANE STRESS PROBLEM

Finite element lOEtUB 102 Etue lOEtve lOEtvD IONxxA
grids (1- v2 )NoL (1- v2 )NoL (1- v2 )NoL (1- v2 )NoL No

] xl -1·507941 2·1934 1·31824 5·085466 -1·44190
2x2 -1·519812 1·8684 1·28574 5·073595 -1-40137
3x3 -1·519773 1·8046 1·27936 5·073633 -1-40559
4x4 -1·519862 1·7896 1·27787 5·073544 -1·40789
5 x 5 -1·519900 1·7852 1·27742 5·073507 -1·40880

Exact -1·519928 1·7837 ]·27727 5·073478 -]·40954

10NYYA N XXB IONYYB N xxc Strain energy

No No No No lOEt2 U/(1- v2)UN6

8·55810 0·039928 4·70735 0·03181 2·7879813
8·59863 0·004235 4·17500 -0·00005 2·7933662
8·59441 0·000848 4·11902 -0·00299 2·7935404
8·59211 0·000329 4·10971 -0·00285 2·7935617
8·59120 0·000166 4·10767 -0·00233 2·7935667

8·59046 0 4·10670 0 2·7935695

Note: N YYD = NxxB+N o• N xxD = N yyB• N yye = N xxe .
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and convergence plots of these quantities are given in Fig. 3. Note that no attempt is made
to satisfy stress boundary conditions, and hence correct values of stresses on the boundaries
are obtained only as 11 ->XJ.

The first result to be noted is that the strain energy convergence rate appears to be
slightly less than n- s, which is somewhat lower than the predicted asymptotic rate of II ",

On the other hand, the actual error in strain energy is very small (10- 6 for 11= 10) and
therefore it is clear that the element gives excellent accuracy.

As seen in Fig. 3, the displacement and stress results seem to convergence quite rapidly.
The only odd result is the peculiar kink in the curves for N yyc , N xxc , Us and 1'D for 11 c= 4.
It may be noted from Table 3 that Ny}'c and N xxc change sign between n = 2 and 4 and,
furthermore have extraordinarily small magnitudes for 11 4. Hence, the especially small
error in Us and v D for 11 = 4 must be associated with the fact that N yyC and N uc are for­
tuitously close to their exact values for this case. Finally, it may be noted that tv which is
the largest displacement obtained in this problem, is predicted to within 0·001 percent with
the n = 10 gridwork of the plane stress elements,

3.2 Spherical cap example

The shallow shell finite element is now applied to the analysis of the shallow spherical
shell shown in Fig. 4. The shell is loaded by a uniform pressure Po and is freely supported
on a boundary of square planform. Freely supported as used here means that wand u are

10- 2

{NyyC
NI()(C

i 10-' u,

N:O(A

{Nne
N"",

{NYYD

10-4 N>:XB Vc

Ny'i.A

STRAIN
, ENE~mY

IO-'L....-::----4:-~6-;;-8~'O 2 4

n. NUMBER OF ELEMENTS ALONG SIDE OF LENGTH L

F1G. 3. Relative error in stress, displacement and strain energy predictions for parabolically loaded
plane stress problem.
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UN1FORM

3X3 GRID lW
A B
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FIG. 4. Spherical cap geometry.

constrained to be zero along the edges y = 0 and L, and wand v are zero along x = 0
and L. The problem is a good test case, since it has an exact solution in the form ofa double
sine series [24J. Furthermore, the finite elements can fit the rectangular boundary exactly
thus eliminating any error in approximating the boundary shape. This allows a clear
evaluation of how well the finite elements approximate the shell behaviour.

The shell is analyzed for two values of the parameter RtIL2
, namely 0·02 and 0·005.

These two values correspond to effective shell boundary layer widths of about LI6 and
L/12, respectively. Using symmetry, only one quarter of the shell is modelled, and the
calculations are carried out for uniform gridworks of 1 x 1, 2 x 2 and 3 x 3 arrays with
orientations as indicated in Fig. 4. The calculations are also carried out using the non­
uniform 3 x 3 grid shown in the figure for the shell configuration with the smallest boundary
layer, RtlL 2 = 0·005. The sides AB and AD were subdivided into lengths with ratios 2: 3: 5
for this case.

Typical numerical results are presented in Tables 4 and 5 for displacements, membrane
forces and moments at points A, Band C and also for the total strain energy in the shell.
Absolute values of the relative errors in these quantities are plotted in Fig. 5 vs. n, the
number of elements along a full edge of the shell, and typical distributions along the lines
AB and BC are plotted in Figs. ~9 as obtained from the uniform element arrays.

The excellent accuracy and rapid convergence of the approximations obtained with
the present element are clear from these results. Furthermore, it appears that for most of
the quantities listed in Tables 4 and 5 this convergence is monotonic (excluding the non­
uniform 3 x 3 grid results). The main exceptions to this are the quantities M xy and N xy at
the corner A, and in fact, the predictions for these quantities exhibit the largest errors. It
is interesting that in the comparable flat plate problem [15, 16], the M xyA or corner reaction
also exhibited the largest error and slowest convergence rate. It may also be noted that as
RtlL 2 goes to zero, the present shell approaches a membrane and N xy at the corner becomes
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TABLE 4. NUMERICAL RESULTS FOR SPHERICAL CAP PROBLEM, RIll.' 1)·02

--------------------- ---"-.'- ...

Finite element
grids

1 x I
2x2
3x3

Exact

Etwc

PoR 2

-1·039564
-1·012863

1·009819

- 1·009785

10Nuc

PaR

7·951
5·248
5·111

5·049

j03Muc
poRt

18·08
1·635

- 8·873

8-487

IOEtv"

poRI.

-3-54786
- 3·66585

- 3·67742

-·3·67936

I' R

l).OliO
()·OO"I

-()·004;

NYYR l'vlxxR lW y.vJJ

PoR poRt poRI

0·0947 0·0088 .0·0293
-0·0189 0·0016 0·0053
--0·0144 (J·0004 0·0014

0 0 0

--1·095
-1·242

1·165

1·059

- 1371
... 1·300
.- j·229

1·159

10EtL

pl,L'R"

3·84(J25
3·89319
3·89863

3·89958

TABLE 5. NUMERICAL RESULTS FOR SPHERICAL CAP PROBLEM, Rt/U = (J·(JOS

Finite element EIWc 10N xxc 10'Mxxc I(JEt"B l\'_~ xll

grids POR '
----.---- ...

PoR poRt poRI. PoR
..'._-------_..'-,,-_...

I x I -1·044645 -1(J·2l2 1511.9 - 3-88215 ()·1267
2x2 -(J·984333 - 5·125 - 953-4 -- 3·99lO5 0·0295
3x3 -/·000241 .- 5·013 -20·27 -4·(J2524 0·0029
3 x 3" -0·997084 - 5·015 -140·0 -4·03158 -O·(J050

Exact -1·000429 5·002 3-1 -4·03196 ()
._--,---,._--_._.._--"~~~----~---_._. -'-'- --_.._..._._--- -~-_._--_ .. - -

_.---_._--_._-----,-_.."_.,~---,--~-~-----~---------

NYYR M xxB AIYYB IOM xYA N xYA JOEt/.!

PoR poRt poRt poRt paR pl,UR 2

0·4224 0·(J249 0·0831 -0·3588 -1-4881 4·20345
0·0982 0·0147 (J·0488 -0·9975 -- 1·7564 4·40870
0·0098 0·0048 0·0161 - 1·2499 1·7781 4·43990

-0·0166 0·0011 0·(J038 - 1·2052 j·6904 4-44846

0 0 0 - 1·0582 - 1·6001 4·44990

" Nonuniform array (see Fig. 4).

logarithmically singular. Hence, it appears clear that predicting Mxy and N xy in the corner
A provides the severest test of the finite element approximation.

Again, since no attempt is made to satisfy stress boundary conditions, the moments
M xx and M yy and the forces N xx and N yy are not zero at B. However, it is clear from Tables
4 and 5 that these quantities do converge rapidly to zero as the finite element modelling
is systematically refined.

While the actual strain energy convergence is strictly monotonic as predicted, its rate
of change with n is far from the asymptotic rate of n - 6. For instance, the strain energy error
slope between n = 4 and 6 is approximately - 4·7 and - 3·5 for Rt/e = 0·02 and 0·005,
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FIG. 9. Distributions along AB in spherical cap problem, Rt/U = 0·005.

respectively. It appears that the reduction of the boundary layer width associated with
the decrease in RtfL 2 is quite detrimental to this convergence rate. Hence, it appears that
the finite element sizes would have to be reduced well below the boundary layer width
before the asymptotic rate of convergence could ever be attained. Finally, it may be noted
from Fig. 5 that rearranging the elements in the 3 x 3 grid to the nonuniform case shown in
Fig. 4 reduces the error in strain energy by about one order of magnitude.

The distributions plotted in Figs. 6-9 reveal many interesting features of the present
finite element method. Firstly, as expected, the displacements are predicted very accurately,
the membrane forces somewhat less accurately and of course bending moments less
accurately still. However, these bending moment predictions are still remarkably good
considering that the finest element gridwork employed is only 3 x 3 with only 120 degrees
of freedom after boundary conditions. It is interesting to note how the finite element
predictions oscillate about the exact curves sometimes yielding, for the coarser grids,
quite large discrepancies at points A, Band C. It is seen that although the membrane forces
and bending moments are continuous at element nodes, they do exhibit kinks there. How­
ever, these kinks tend to disappear as the finite element grids are progressively refined.

The reduction of the boundary layer width associated with the reduction of RtfL 2

from 0·02 to 0·005 has the effect of increasing the error in the predictions, especially near
the boundaries. This fact is also shown quite clearly in Fig. 5. This increase in error is easily
attributable to the steeper gradients encountered near the boundaries, and an obvious way
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to counteract these effects is to reduce the finite element sizes in that region. When this IS

done using an irregular grid (Fig. 4), the results of Fig. 10 are obtained (see also the numerical
results in Table 5). It is seen that a substantial increase in accuracy for membrane forces
and bending moments is obtained, especially near the boundaries.

O'04~~"
PoRt 0-02

\
~o _---=':..="=....~_- ~=='

~~ "0,005

EXACT SOLUTION

NONUNIFORM 3 X 3 GRID

0.05

O'------..::.....::;;;;;:::;::2'~-------'

FIG. 10. Membrane force and moment distributions along BC for spherical cap problem using
nonuniform finite element array.

3.3 Cylindrical shell roof problem

The final example application is the cylindrical shell roof problem shown in Fig. 11.
The shell is loaded by its own dead weight and is supported by diaphragms at the ends but
is free along the sides. Using symmetry, only one quarter of the shell is analyzed, and
various uniform gridworks of elements are used with orientations as shown. The numerical
data given in the figure are used in the calculations, so that the results may be compared
directly with those of other authors.

Most of these authors have compared their results with the so-called exact calculations
of Scorde1is and Lo [25], which in turn are based on the theory of Gibson [26]. Gibson's
equations are essentially shallow shell equations, but the shallow shell approximations
are not used consistently when particular loadings are considered. That is, exact trigono­
metric representations for the tangential and normal loads are employed, and the solution
integrals are evaluated over the actual shell surface rather than over the base plane. These
factors have an appreciable effect in the present problem because the shell is only mar­
ginally shallow. Hence, in order for the finite element results to be comparable with these
exact results, the same procedures must be introduced here. This is easily done by expand­
ing the trigonometric load variations up to second order within each element by Taylor's
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FIG. 11. Cylindrical shell roof configuration (3 x 3 grid shown).
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series. The consistent load matrices are then obtained in closed form following the proce­
dure of Section 2.4. Further, the area of integration for both the stiffness and load matrices
is taken equal to that of the actual shell surface. Finally, it is noted that Gibson's symmetric
series solution was carefully programmed, and accurate calculations were obtained for the
quantities of interest. These exact calculations differ somewhat from those given by Carr
[5], but no explanation for these discrepancies has been found.

Some of the most pertinent numerical results are given in Table 6 and convergence
plots for these quantities are given in Fig. 12. It is seen again that the approximations
obtained with even the coarsest gridworks are exceedingly accurate, and the convergence
is again very rapid. In particular, the slopes of the error curves for displacements and strain
energy are all about - 5.

TABLE 6. NUMERICAL RESULTS FOR CYLINDRICAL SHELL ROOF PROBLEM

Finite element lOuA W B IOvB IOwc

grids (in.) (in.) (in.) (in.)

1 x 1 -0·9158 -1·21672 - 3·96349 0·2228
2x2 -1·3954 - 3·66312 - 8·08975 4·5518
3x3 -1-49497 -4·03037 -8·65809 5·1446
4x4 -1·51050 -4·08388 - 8·73995 5·2258

Exact -1·51325 -4·09916 -8·76147 5·2494

1O- 3N
xxB 1O- 3 M yyC 10- 2 Mxxc 10 - 4 X strain

energy
(lb./in.) (lb. in.jin.) (lb. in.jin.) (lb.jin.)

5·3637 1·5437 2·994 2·78548
6·9845 2·3463 4·498 5·37577
6·6313 2·1571 2·127 5·79980
6·5016 2·0871 1·284 5·86511

6·4124 2·0562 0·9272 5·88277
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FIG. 12. Relative error of finite element solutions for cylindrical shell roof problem.

The quantity which has been used by many authors for comparison purposes is the
vertical deflection of point B (Fig. 11). Such a comparison is given in Fig. 13 where the
abscissa is the total number of degrees of freedom (before boundary conditions) required
with the various finite element representations. It is clear that this comparison favours the
present results in that it shows that the present element yields the best accuracy for the
minimum number of degrees of freedom. It is interesting to note that the results of Refs.
[5] and [13] have not actually converged to the exact solution even though more than 1000
degrees of freedom were used.

4. CONCLUSIONS

A conforming shallow shell element of arbitrary triangular shape has been presented.
The element may be used to solve shallow shell problems with a wide variety of boundary
shapes. The examples presented demonstrate that the element provides excellent accuracy
and rapid convergence. In fact, the theoretical asymptotic rate of convergence of strain
energy is n-6. Unique values of stresses are obtained directly at nodal points. Accurate
predictions of membrane force and bending moment distributions, as well as displacement
distributions were obtained in all the examples using only a few elements.
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ELEMENT DEGREES r:E
TYPE FREEOOM

4 FLAT PLATE 15

12 CURVED 15

13 CURVED 36

13 CURVED 27
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FIG. 13. Cylindrical shell roof problem comparisons.

1400 1600

The present work represents the first step in extending the successful approach used in
the high precision triangular plate bending element to shells. The next step will involve a
general deep shell formulation.
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APPENDIX

Conformity requirements

A finite element is said to be conforming if the displacements have sufficient inter­
element continuity to satisfy the admissibility requirements of the theorem of minimum
potential energy. For shells, the appropriate continuity requirements are that the displace­
ment vector and the edgewise component of the rotation vector are continuous between
elements. In discussing conformity requirements for shallow shells it is helpful to dis­
tinguish two cases: (a) smooth shells in which the slopes (x, Cy , are continuous everywhere,
and (b) shells with kinks, i.e. shells in which discontinuities in (x, (y, occur.

In the case of smooth shells, continuity of displacement requires that the individual
components u, v, w, be continuous. Continuity ofedgewise rotation is assured if the deriva­
tives wx , wy are continuous. The situation here may be contrasted with the situation in
deep shells. For deep shells the rotations are given by expressions of the form W x +u/R where
R is a radius of curvature. In shallow shells the terms u/R are neglected, so that conformity
requires only that wx , wy , be continuous. Furthermore, discontinuities in the radii of
curvature have no influence on the conformity requirements for shallow shells. These
conclusions can be verified by considering the variation of the strain energy of an element.
From equation (4), this variation may be calculated as

(29)



(31)
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where M~~, N~~, etc., are the stress resultants and bending moments given by

N ~t, = C(et,t, + velflf) N Iflf = C(elflf+ vet,t,) N ~If = C(1- v)e~If/2

Mt,t, = D(Kt,t,+VKIfIf)' MIfIf = D(KIfIf+VKst,) Mt,1f = D(1-v)Kt,If/2

with C = Et/(l- v2 ). By integration by parts and use of the divergence theorem, the
integral in (29) can be transformed to

DU = f {(DuN~~+DVN~If+DWQt,-DW~M~~-DWIfM~If)dl1

-(DuN~If+DvN'1'1 +DwQIf- DWt,M~If-DwIfMIfIf) d~}

-ff {Du(O~(,~+ O~('If) +Dv(O~('If+ a;l1
lflf

)

(
OQ(, aQIf )

+Dw o~+ 011 +((,t,N(,t,+2((,IfN(,If+(IfIfNIfIf

_. (OM~t, OM~If_Q)_0 (OM~1f OMIfIf _ Q )} d.l'd (30)
(jw~ o~ + Ot1 t, Wlf o~ + 011 If '" 11

where Q~, QIf, are the usual transverse shearing forces. In view of the equilibrium equations
for shallow shells, the surface integral in (30) reduces to the expression for the virtual work
of the applied loads. Thus,

DU = f{(DuNt,t, +DvNt,If+DwQt,-Dwt,Mt,t, DWIfMt,If)d11

- (DuN ~If +DvNlf1f +DwQIf- <5wt,Mt,If- DWIfMIfIf) d~}

+ f f (QuDu +QuDv +QwDw) d~ d11·

The conformity requirements may be deduced from the contour integral in (31), since
inter-element continuity of the integrands therein is essential for the validity ofthe theorem
of minimum potential energy. It is seen that it is sufficient for u, v, wand the first derivatives
of W to be continuous, and hence the element presented in this paper is fully conforming
for smooth shells.

The situation, however, is different in non-smooth shells. Ifa kink occurs along an inter­
element boundary the normal to the shell surface is discontinuous between elements. The
continuity of the displacement vector then is no longer a simple matter of continuity of
the individual components. Instead, continuity involves linear relations between individual
components. In this case then, strict continuity cannot be obtained with the present
element because of the difference in degree between the polynomial used for wand the
polynomials used for u and v.

(Received 28 April 1969; revised 23 October 1969)
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A6cTpaKT-06cYlKilaCTClI KOHC'IHbIH :mCMCHT COOTBeTCTBYKlLUCH 1I0ilOrOH 060JlO'lKIi, npOWIBOJlbHoi-!

TpcxyrOJlbHOH ljJOpMbl, KOTOpblH npliHIiMaCTClI ilJlll pCWCHl-lll HCKOTOpblX CTanl'lCCKHX la;la'l. 'hOT

1JlCMCHT COilCPlKliT 36 0606wCHHbiX KOOPilIiHaT, IiMCHHO: IWpMaJlbHOC ncpCMculCHIiC It' 11 cn>
ncpBbIC H BTOpbJC npOli3BOilHbiC nJlloc TaHrCHUliaJlbHblC ncpCMCWCHlill Ii II H IIX IlCPBblC

npOH3BOilHbiC npH KalKilOH BCpWIiHC. !-1cnOJlb3Yll ')TOT 3i1CMCHT, TCOpCTIi'lCCKall aCIiMflTOTIi'lCCKaH

CKOpOCTb CXOilliMOCTIi 3HcprliH ilcljJopMaUHIi paBHlICTClI II ", rJJC 1I''IHCJlO 1JlCMCilTOB 11<1 HCKOTOPOH

'1aCTH CTpyKTypbI. npCilCTaBJlCHHblC npHMCHCHHlI YKa3bIBaKlT, 'ITO, B ;laHHOM CJly'lac, 1I0JIY'laeTCll

npaBIiJlbHOC onpCilCJlCHHC TaK lIanpllJl(CllliH KaK 11 lICPCMClUCHHH C 1l0MOIUbiO HCJlIa'lIlTCnblloro

'1I1CJla 3JlCMCHTOB.


